
Polyspace® Bug Finder™ Server™ Release Notes



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ Server™ Release Notes
© COPYRIGHT 2019-2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents


R2020a
 

Compiler Support: Set up Polyspace analysis easily for code compiled
with MPLAB XC8 C compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Compiler Support: Set up Polyspace analysis to emulate MPLAB XC16 and
XC32 compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Source Code Encoding: Non-ASCII characters in source code analyzed
and displayed without errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Extending Checkers: Run stricter analysis that considers all possible
values of system inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

AUTOSAR C++14 Support: Check for 37 new rules related to lexical
conventions, standard conversions, declarations, derived classes,
special member functions, overloading and other groups . . . . . . . . . . . 1-3

CERT C Support: Check for CERT C rules related to threads and
hardcoded sensitive data, and recommendations related to macros and
code formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6

CERT C++ Support: Check for CERT C++ rule related to order of
initialization in constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7

CWE Support: Check for CWE rule related to incorrect block delimitation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8

Bug Finder Defect Checkers: Check for possible performance
bottlenecks, hardcoded sensitive data and other issues . . . . . . . . . . . . 1-8

New Checkers in R2020a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Updated Checkers in R2020a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10

Modifying Checkers: Create list of functions to prohibit and check for use
of functions from the list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10

Exporting Results: Export only results that must be reviewed to satisfy
software quality objectives (SQOs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11

Jenkins Support: Use sample Jenkins Pipeline script to run Polyspace as
part of continuous delivery pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11

Changes in analysis options and binaries . . . . . . . . . . . . . . . . . . . . . . . . . 1-11
Option -function-behavior-specifications renamed to -code-behavior-
specifications and capabilities extended . . . . . . . . . . . . . . . . . . . . . . . 1-11

iii

Contents



Changes to coding rules checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12

Report Generation: Configure report generator to communicate with
Polyspace Access over HTTPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13

Report Generation: Navigate to Polyspace Access Results List from report
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13

R2019b
 

Compiler Support: Set up Polyspace analysis easily for code compiled
with Cosmic compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

AUTOSAR C++14 Support: Check for misuse of lambda expressions,
potential problems with enumerations, and other issues . . . . . . . . . . . 2-2

CERT C++ Support: Check for pointer escape via lambda expressions,
exceptions caught by value, use of bytewise operations for copying
objects, and other issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

CERT C Support: Check for undefined behavior from successive joining or
detaching of the same thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

New and updated Bug Finder defect checkers . . . . . . . . . . . . . . . . . . . . . . 2-4
New Checkers in R2019b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Updated Checkers in R2019b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

MISRA C:2012 Directive 4.12: Dynamic memory allocation shall not be
used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

Configuration from Build System: Compiler version automatically
detected from build system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5

R2019a
 

Bug Finder Analysis Engine Separated from Viewer: Run Bug Finder
analysis on server and view the results from multiple client machines
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

Continuous Integration Support: Run Bug Finder on server class
computers with continuous upload to Polyspace Access web interface
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

Continuous Integration Support: Set up testing criteria based on Bug
Finder static analysis results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4

iv Contents



Continuous Integration Support: Set up email notification with summary
of Bug Finder results after analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4

Offloading Polyspace Analysis to Servers: Use Polyspace desktop products
on client side and server products on server side . . . . . . . . . . . . . . . . . . 3-5

v





R2020a

Version: 3.2

New Features

Bug Fixes

Compatibility Considerations

1



Compiler Support: Set up Polyspace analysis easily for code compiled
with MPLAB XC8 C compilers
Summary: If you build your source code by using MPLAB XC8 C compilers, in R2020a, you can
specify the compiler name for your Polyspace® analysis.

You specify a compiler using the option Compiler (-compiler).
polyspace-bug-finder-server -compiler microchip -target pic -sources file.c ....

See also MPLAB XC8 C Compiler (-compiler microchip).

Benefits: You can now set up a Polyspace project without knowing the internal workings of MPLAB
XC8 C compilers. If your code compiles with your compiler, it will compile with Polyspace in most
cases without requiring additional setup. Previously, you had to explicitly define macros that were
implicitly defined by the compiler and remove unknown language extensions from your preprocessed
code.

Compiler Support: Set up Polyspace analysis to emulate MPLAB XC16
and XC32 compilers
Summary: If you use MPLAB XC16 or XC32 compilers to build your source code, in R2020a, you can
easily emulate these compilers by using the Polyspace GCC compiler options. See “Emulate
Microchip MPLAB XC16 and XC32 Compilers”.

For each compiler, you can emulate these target processor types:

• MPLAB XC16: Targets PIC24 and dsPIC.
• MPLAB XC32: Target PIC32.

Benefits: You can copy the analysis options required for emulating MPLAB XC16 or XC32 compilers
and paste into your Polyspace options file (or specify in a Polyspace project in the user interface), and
avoid compilation errors from issues specific to these compilers.

Source Code Encoding: Non-ASCII characters in source code analyzed
and displayed without errors
Summary: In R2020a, if your source code contains non-ASCII characters, for instance, Japanese or
Korean characters, the Polyspace analysis can interpret the characters and later display the source
code correctly.

If you still have compilation errors or display issues from non-ASCII characters, you can explicitly
specify your source code encoding using the option Source code encoding (-sources-
encoding).

Extending Checkers: Run stricter analysis that considers all possible
values of system inputs
Summary: In R2020a, you can run a stricter Polyspace Bug Finder™ analysis that checks the
robustness of your code against numerical edge cases. For defects that are detected with the stricter
checks, the analysis can also show an example of values that lead to the defect. Use the option Run

R2020a

1-2



stricter checks considering all values of system inputs (-checks-using-
system-input-values) to enable the stricter checks.

Benefits: For a subset of Numerical and Static memory defect checkers, the analysis considers all
possible values of:

• Global variables
• Reads of volatile variables
• Returns of stubbed functions
• Inputs to the functions you specify with the option Consider inputs to these functions

(-system-inputs-from)

See also “Extend Bug Finder Checkers to Find Defects from Specific System Input Values”.

AUTOSAR C++14 Support: Check for 37 new rules related to lexical
conventions, standard conversions, declarations, derived classes,
special member functions, overloading and other groups
Summary: In R2020a, you can look for violations of these AUTOSAR C++14 rules in addition to
previously supported rules.

AUTOSAR C++14 Rule Description Polyspace Checker
A0-1-5 There shall be no unused named

parameters in the set of
parameters for a virtual function
and all the functions that
override it.

AUTOSAR C++14 Rule
A0-1-5

A2-3-1 Only those characters specified
in the C++ Language Standard
basic source character set shall
be used in the source code.

AUTOSAR C++14 Rule
A2-3-1

A2-7-1 The character \ shall not occur
as a last character of a C++
comment.

AUTOSAR C++14 Rule
A2-7-1

A2-10-1 An identifier declared in an
inner scope shall not hide an
identifier declared in an outer
scope.

AUTOSAR C++14 Rule
A2-10-1

A2-10-6 A class or enumeration name
shall not be hidden by a
variable, function or enumerator
declaration in the same scope.

AUTOSAR C++14 Rule
A2-10-6

A2-13-4 String literals shall not be
assigned to non-constant
pointers.

AUTOSAR C++14 Rule
A2-13-4

A2-13-6 Universal character names shall
be used only inside character or
string literals.

AUTOSAR C++14 Rule
A2-13-6

 

1-3



AUTOSAR C++14 Rule Description Polyspace Checker
A3-3-2 Static and thread-local objects

shall be constant-initialized.
AUTOSAR C++14 Rule
A3-3-2

A4-5-1 Expressions with type enum or
enum class shall not be used as
operands to built-in and
overloaded operators other than
the subscript operator [], the
assignment operator =, the
equality operators == and !=,
the unary & operator, and the
relational operators <, <=, >,
>=.

AUTOSAR C++14 Rule
A4-5-1

A4-10-1 Only nullptr literal shall be used
as the null-pointer-constraint.

AUTOSAR C++14 Rule
A4-10-1

A7-1-3 CV-qualifiers shall be placed on
the right hand side of the type
that is a typedef or a using
name.

AUTOSAR C++14 Rule
A7-1-3

A7-1-8 A non-type specifier shall be
placed before a type specifier in
a declaration.

AUTOSAR C++14 Rule
A7-1-8

A7-4-1 The asm declaration shall not be
used.

AUTOSAR C++14 Rule
A7-4-1

A8-2-1 When declaring function
templates, the trailing return
type syntax shall be used if the
return type depends on the type
of parameters.

AUTOSAR C++14 Rule
A8-2-1

A8-5-3 A variable of type auto shall not
be initialized using {} or ={}
braced-initialization.

AUTOSAR C++14 Rule
A8-5-3

A10-1-1 Class shall not be derived from
more than one base class which
is not an interface class.

AUTOSAR C++14 Rule
A10-1-1

A10-3-1 Virtual function declaration
shall contain exactly one of the
three specifiers: (1) virtual, (2)
override, (3) final.

AUTOSAR C++14 Rule
A10-3-1

A10-3-2 Each overriding virtual function
shall be declared with the
override or final specifier.

AUTOSAR C++14 Rule
A10-3-2

A10-3-3 Virtual functions shall not be
introduced in a final class.

AUTOSAR C++14 Rule
A10-3-3

A10-3-5 A user-defined assignment
operator shall not be virtual.

AUTOSAR C++14 Rule
A10-3-5

R2020a

1-4



AUTOSAR C++14 Rule Description Polyspace Checker
A11-0-2 A type defined as struct shall:

(1) provide only public data
members, (2) not provide any
special member functions or
methods, (3) not be a base of
another struct or class, (4) not
inherit from another struct or
class.

AUTOSAR C++14 Rule
A11-0-2

A12-0-1 If a class declares a copy or
move operation, or a destructor,
either via "=default", "=delete",
or via a user-provided
declaration, then all others of
these five special member
functions shall be declared as
well.

AUTOSAR C++14 Rule
A12-0-1

A12-4-1 Destructor of a base class shall
be public virtual, public override
or protected non-virtual.

AUTOSAR C++14 Rule
A12-4-1

A12-8-6 Copy and move constructors
and copy assignment and move
assignment operators shall be
declared protected or defined
"=delete" in base class.

AUTOSAR C++14 Rule
A12-8-6

A13-1-2 User defined suffixes of the user
defined literal operators shall
start with underscore followed
by one or more letters.

AUTOSAR C++14 Rule
A13-1-2

A13-2-3 A relational operator shall
return a boolean value.

AUTOSAR C++14 Rule
A13-2-3

A13-5-1 If "operator[]" is to be
overloaded with a non-const
version, const version shall also
be implemented.

AUTOSAR C++14 Rule
A13-5-1

A13-5-2 All user-defined conversion
operators shall be defined
explicit.

AUTOSAR C++14 Rule
A13-5-2

A14-7-2 Template specialization shall be
declared in the same file (1) as
the primary template (2) as a
user-defined type, for which the
specialization is declared.

AUTOSAR C++14 Rule
A14-7-2

A14-8-2 Explicit specializations of
function templates shall not be
used.

AUTOSAR C++14 Rule
A14-8-2

 

1-5



AUTOSAR C++14 Rule Description Polyspace Checker
A16-6-1 #error directive shall not be

used.
AUTOSAR C++14 Rule
A16-6-1

A17-6-1 Non-standard entities shall not
be added to standard
namespaces.

AUTOSAR C++14 Rule
A17-6-1

A18-1-3 The std::auto_ptr shall not be
used.

AUTOSAR C++14 Rule
A18-1-3

A18-1-6 All std::hash specializations for
user-defined types shall have a
noexcept function call operator.

AUTOSAR C++14 Rule
A18-1-6

A18-5-2 Operators new and delete shall
not be called explicitly.

AUTOSAR C++14 Rule
A18-5-2

A18-9-3 The std::move shall not be used
on objects declared const or
const&.

AUTOSAR C++14 Rule
A18-9-3

A23-0-1 An iterator shall not be
implicitly converted to
const_iterator.

AUTOSAR C++14 Rule
A23-0-1

CERT C Support: Check for CERT C rules related to threads and
hardcoded sensitive data, and recommendations related to macros
and code formatting
Summary: In R2020a, you can look for violations of these CERT C rules and recommendations in
addition to the previously supported ones. With these new rules, almost all CERT C rules can be
checked with Bug Finder.

R2020a

1-6



Rules

CERT C Rule Description Polyspace Checker
CON34-C Declare objects shared between

threads with appropriate
storage durations

CERT C: Rule CON34-C

CON38-C Preserve thread safety and
liveness when using condition
variables

CERT C: Rule CON38-C

MSC41-C Never hard code sensitive
information

CERT C: Rule MSC41-C

POS47-C Do not use threads that can be
canceled asynchronously

CERT C: Rule POS47-C

POS50-C Declare objects shared between
POSIX threads with appropriate
storage durations

CERT C: Rule POS50-C

POS53-C Do not use more than one mutex
for concurrent waiting
operations on a condition
variable

CERT C: Rec. POS53-C

Recommendations

CERT C Recommendation Description Polyspace Checker
PRE10-C Wrap multistatement macros in

a do-while loop
CERT C: Rec. PRE10-C

PRE11-C Do not conclude macro
definitions with a semicolon

CERT C: Rec. PRE11-C

EXP15-C Do not place a semicolon on the
same line as an if, for, or while
statement

CERT C: Rec. EXP15-C

CERT C++ Support: Check for CERT C++ rule related to order of
initialization in constructor
Summary: In R2020a, you can look for violations of these CERT C++ rules in addition to previously
supported rules.

CERT C++ Rule Description Polyspace Checker
DCL58-CPP Do not modify the standard

namespaces
CERT C++: DCL58-CPP

MSC41-C Never hard code sensitive
information

CERT C++: MSC41-C

OOP53-CPP Write constructor member
initializers in the canonical
order

CERT C++: OOP53-CPP

 

1-7

https://wiki.sei.cmu.edu/confluence/x/rNYxBQ
https://wiki.sei.cmu.edu/confluence/x/l9UxBQ
https://wiki.sei.cmu.edu/confluence/x/pwF2Bg
https://wiki.sei.cmu.edu/confluence/x/qtYxBQ
https://wiki.sei.cmu.edu/confluence/x/j9UxBQ
https://wiki.sei.cmu.edu/confluence/x/cNUxBQ
https://wiki.sei.cmu.edu/confluence/x/pdYxBQ
https://wiki.sei.cmu.edu/confluence/x/idYxBQ
https://wiki.sei.cmu.edu/confluence/x/WtYxBQ
https://wiki.sei.cmu.edu/confluence/x/Xnw-BQ
https://wiki.sei.cmu.edu/confluence/x/pwF2Bg
https://wiki.sei.cmu.edu/confluence/x/dXw-BQ


CWE Support: Check for CWE rule related to incorrect block
delimitation
Summary: In R2020a, you can check for violation of this CWE rule in addition to previously
supported rules.

CWE Rule Description Polyspace Checkers
483 Incorrect block delimitation • Incorrectly indented

statement
• Semicolon on same line

as if, for or while
statement

For the full mapping between CWE rules and Polyspace Bug Finder defect checkers, see “CWE
Coding Standard and Polyspace Results”.

Bug Finder Defect Checkers: Check for possible performance
bottlenecks, hardcoded sensitive data and other issues
Summary: In R2020a, you can check for new issues and also see improved results for previous
checkers.

New Checkers in R2020a

A new category of C++-specific checkers checks for constructs that might cause performance issues
and suggests more efficient alternatives. Other checkers include security checkers for hard coded
sensitive data, good practice checkers for issues such as ill-formed macros and concurrency checkers
for issues such as asynchronously cancellable threads.

Performance Checkers

Defect Description
Const parameter values may cause
unnecessary data copies

Const parameter values prevent a move operation
resulting in a more performance-intensive copy
operation

Const return values may cause
unnecessary data copies

Const return values prevent a move operation
resulting in a more performance-intensive copy
operation

Empty destructors may cause
unnecessary data copies

User-defined empty destructors prevent
autogeneration of move constructors and move
assignment operators

Inefficient string length computation String length calculated by using string length
functions on return from
std::basic_string::c_str() instead of
using std::basic_string::length()

std::endl may cause an unnecessary
flush

std::endl is used instead of more efficient
alternatives such as \n

R2020a

1-8

https://cwe.mitre.org/data/definitions/483.html


Other Checkers

Defect Description
Asynchronously cancellable thread Calling thread might be cancelled in an unsafe

state
Automatic or thread local variable
escaping from a thread

Variable is passed from one thread to another
without ensuring that variable stays alive for
duration of both threads

Hard-coded sensitive data Sensitive data is exposed in code, for instance as
string literals

Incorrectly indented statement Statement indentation incorrectly makes it
appear as part of a block

Macro terminated with a semicolon Macro definition ends with a semicolon
Macro with multiple statements Macro consists of multiple semicolon-terminated

statements, enclosed in braces or not
Missing final step after hashing
update operation

Hash is incomplete or non-secure

Missing private key for X.509
certificate

Missing key might result in run-time error or non-
secure encryption

Move operation on const object std::move function is called with object
declared const or const&

Multiple mutexes used with same
conditional variable

Threads using different mutexes when
concurrently waiting on the same condition
variable is undefined behavior

Multiple threads waiting on same
condition variable

Using cnd_signal to wake up one of the threads
might result in indefinite blocking

No data added into context Performing hash operation on empty context
might cause run-time errors

Possibly inappropriate data type for
switch expression

Switch expression has a data type other than
char, short, int or enum

Semicolon on the same line as an if,
for or while statement

Semicolon on same line results in empty body of
if, for or while statement

Server certificate common name not
checked

Attacker might use valid certificate to
impersonate trusted host

TLS/SSL connection method not set Program cannot determine whether to call client
or server routines

TLS/SSL connection method set
incorrectly

Program calls functions that do not match role
set by connection method

Unmodified variable not const-
qualified

Variable is not const-qualified but no
modification anywhere in the program

Use of a forbidden function Function appears in a blacklist of forbidden
functions

Redundant expression in sizeof operand sizeof operand contains expression that is not
evaluated

 

1-9



Defect Description
X.509 peer certificate not checked Connection might be vulnerable to man-in-the-

middle attacks

Updated Checkers in R2020a

Defect Description Update
Copy constructor not
called in initialization
list

Copy constructor does not call
copy constructors of some data
members

The checker no longer flags
copy constructors in templates.
In template declarations, the
member data types are not
known and it is not clear which
constructors need to be called.

Dead code Code does not execute If a try block contains a
return statement, the checker
no longer flags the
corresponding catch block as
dead code. A return statement
involves a copy and copy
constructors that are called
might throw exceptions,
resulting in the catch block
being executed.

Missing explicit keyword One-parameter constructor
missing the explicit specifier

The checker has been updated
to include user-defined
conversion operators declared
or defined in-class without the
explicit keyword.

Missing return statement Function does not return value
though the return type is not
void

The checker respects the option
-termination-functions. If
Bug Finder incorrectly flags a
missing return statement on a
path where a process
termination function exists, you
can make the analysis aware of
the process termination function
using this option.

Modifying Checkers: Create list of functions to prohibit and check for
use of functions from the list
Summary: In R2020a, you can define a blacklist of functions to forbid from your source code. The
Bug Finder checker Use of a forbidden function checks if a function from this list appears in
your sources.

Benefits: A function might be blacklisted for one of these reasons:

• The function can lead to many situations where the behavior is undefined leading to security
vulnerabilities, and a more secure function exists.

R2020a

1-10



You can blacklist functions that are not explicitly checked by existing checkers such as Use of
dangerous standard function or Use of obsolete standard function.

• The function is being deprecated as part of a migration, for instance, from C++98 to C++11.

As part of a migration, you can make a list of functions that need to be replaced and use this
checker to identify their use.

See also “Flag Deprecated or Unsafe Functions Using Bug Finder Checkers”.

Exporting Results: Export only results that must be reviewed to
satisfy software quality objectives (SQOs)
Summary: In R2020a, when exporting Polyspace results from the Polyspace Access web interface to
a text file, you can export only those results that must be fixed or justified to satisfy your software
quality objectives. The software quality objectives are specified through a progressively stricter set of
SQO levels, numbered from 1 to 6.

See also:

• polyspace-access
• “Send Email Notifications with Polyspace Bug Finder Results”
• “Bug Finder Quality Objectives” (Polyspace Bug Finder Access)

Benefits: You can customize the requirements of each level in the Polyspace Access web interface,
and then use the option -open-findings-for-sqo with the level number to export only those
results that must be reviewed to meet the requirements.

Jenkins Support: Use sample Jenkins Pipeline script to run Polyspace
as part of continuous delivery pipeline
Summary: In R2020a, you can start from a template Jenkins Pipeline script to run Polyspace analysis
as part of a continuous delivery pipeline.

See “Sample Jenkins Pipeline Scripts for Polyspace Analysis”.

Benefits: You can make simple replacements to adapt the template to your Polyspace Server and
Access installations, and include the script in a new or existing Jenkinsfile to get up and running with
Polyspace in Jenkins Pipelines.

Changes in analysis options and binaries
Option -function-behavior-specifications renamed to -code-behavior-specifications and
capabilities extended
Warns

The option -function-behavior-specifications has been renamed to -code-behavior-
specifications.

Using this option, you could previously map your functions to standard library functions to work
around analysis imprecisions or specify thread creation routines. Now, you can use the option to
define a blacklist of functions to forbid from your source code.

 

1-11



See also -code-behavior-specifications.

Changes to coding rules checking
Summary: In R2020a, the following changes have been made in checking of previously supported
rules.

Rule Description Change
Some MISRA C®: 2012 rules
that were previously specific to
a C standard

• C90-specific rules: 8.1,
17.3

• C99-specific rules: 3.2,
8.10, 21.11, 21.12

These rules are now checked
irrespective of the C standard.
The reason is that the
constructs flagged by these
rules can be found in code using
either standard, possibly with
language extensions.

MISRA C:2012 Rule 8.4 A compatible declaration shall
be visible when an object with
an external linkage is defined.

• The checker now flags
tentative definitions
(variables declared without
an extern specifier and not
explicitly defined), for
instance:

uint8_t var;
• The checker does not raise a

violation on the main
function.

MISRA C++:2008 Rule
0-1-3, AUTOSAR C++14 Rule
M0-1-3

A project shall not contain
unused variables.

The checker does not flag as
unused constants used in
template instantiations, such as
the variable size here:

const std::uint8_t size = 2;
std::array<uint8_t, size> arr = {0,1};

MISRA C++:2008 Rule
2-10-5

The identifier name of a non-
member object or function with
static duration should not be
reused.

The checker does not flag
situations where a variable
defined in a header file appears
to be reused because the header
file is included more than once,
possibly along different
inclusion paths.

MISRA C++:2008 Rule
18-4-1

Dynamic heap memory
allocation shall not be used.

The checker now flags uses of
the alloca function. Though
memory leak cannot happen
with the alloca function, other
issues associated with dynamic
memory allocation, such as
memory exhaustion and
nondeterministic behavior, can
still occur.

R2020a

1-12



Report Generation: Configure report generator to communicate with
Polyspace Access over HTTPS
In R2020a, if you generate reports for results that are stored on Polyspace Access, you can configure
the polyspace-report-generator binary to communicate with Polyspace Access over HTTPS.

Use the -configure-keystore option to run this one-time configuration step. See polyspace-
report-generator.

Previously, you needed a Polyspace Bug Finder desktop license to generate reports if Polyspace
Access was configured with HTTPS.

Report Generation: Navigate to Polyspace Access Results List from
report
In R2020a, if you generate a report for results that are stored on Polyspace Access, you can navigate
from the report to the Results List in the Polyspace Access web interface.

Click the link in the ID column to open Polyspace Access with the Results List filtered down to the
corresponding finding.

 

1-13





R2019b

Version: 3.1

New Features

Bug Fixes

2



Compiler Support: Set up Polyspace analysis easily for code compiled
with Cosmic compilers
Summary: If you build your source code by using Cosmic compilers, in R2019b, you can specify the
compiler name for your Polyspace analysis.

You specify a compiler using the option Compiler (-compiler).
polyspace-bug-finder-server -compiler cosmic -target s12z -sources file.c ....

Benefits: You can now set up a Polyspace project without knowing the internal workings of Cosmic
compilers. If your code compiles with your compiler, it will compile with Polyspace in most cases
without requiring additional setup. Previously, you had to explicitly define macros that were implicitly
defined by the compiler and remove unknown language extensions from your preprocessed code.

AUTOSAR C++14 Support: Check for misuse of lambda expressions,
potential problems with enumerations, and other issues
In R2019b, you can look for violations of these AUTOSAR C++14 rules in addition to previously
supported rules.

AUTOSAR C++14 Rule Description Polyspace Checker
A0-1-4 There shall be no unused named

parameters in non-virtual
functions.

AUTOSAR C++14 Rule
A0-1-4

A3-1-2 Header files, that are defined
locally in the project, shall have
a file name extension of one
of: .h, .hpp or .hxx.

AUTOSAR C++14 Rule
A3-1-2

A5-1-2 Variables shall not be implicitly
captured in a lambda
expression.

AUTOSAR C++14 Rule
A5-1-2

A5-1-3 Parameter list (possibly empty)
shall be included in every
lambda expression.

AUTOSAR C++14 Rule
A5-1-3

A5-1-4 A lambda expression shall not
outlive any of its reference-
captured objects.

AUTOSAR C++14 Rule
A5-1-4

A5-1-7 A lambda shall not be an
operand to decltype or
typeid.

AUTOSAR C++14 Rule
A5-1-7

A5-16-1 The ternary conditional operator
shall not be used as a sub-
expression.

AUTOSAR C++14 Rule
A5-16-1

A7-2-2 Enumeration underlying base
type shall be explicitly defined.

AUTOSAR C++14 Rule
A7-2-2

A7-2-3 Enumerations shall be declared
as scoped enum classes.

AUTOSAR C++14 Rule
A7-2-3

R2019b

2-2

https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_server/ref/compilercompiler.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea014.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea014.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea312.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea312.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea512.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea512.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea513.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea513.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea514.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea514.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea517.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea517.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea5161.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea5161.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea722.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea722.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea723.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea723.html


AUTOSAR C++14 Rule Description Polyspace Checker
A16-0-1 The preprocessor shall only be

used for unconditional and
conditional file inclusion and
include guards, and using the
following directives: (1)
#ifndef, (2) #ifdef, (3) #if,
(4) #if defined, (5) #elif,
(6) #else, (7) #define, (8)
#endif, (9) #include

AUTOSAR C++14 Rule
A16-0-1

A16-7-1 The #pragma directive shall not
be used.

AUTOSAR C++ 14 Rule
A16-7-1

A18-1-1 C-style arrays shall not be used. AUTOSAR C++ 14 Rule
A18-1-1

A18-1-2 The std::vector<bool>
specialization shall not be used.

AUTOSAR C++ 14 Rule
A18-1-2

A18-5-1 Functions malloc, calloc,
realloc and free shall not be
used.

AUTOSAR C++ 14 Rule
A18-5-1

A18-9-1 The std::bind shall not be
used.

AUTOSAR C++ 14 Rule
A18-9-1

For all supported AUTOSAR C++14 rules, see AUTOSAR C++14 Rules (Polyspace Bug Finder
Access).

CERT C++ Support: Check for pointer escape via lambda expressions,
exceptions caught by value, use of bytewise operations for copying
objects, and other issues
In R2019b, you can look for violations of these CERT C++ rules in addition to previously supported
rules.

CERT C++ Rule Description Polyspace Checker
DCL59-CPP Do not define an unnamed

namespace in a header file
CERT C++: DCL59-CPP

EXP61-CPP A lambda object shall not outlive
any of its reference captured
objects.

CERT C++: EXP61-CPP

MEM57-CPP Avoid using default operator
new for over-aligned types

CERT C++: MEM57-CPP

ERR61-CPP Catch exceptions by lvalue
reference

CERT C++: ERR61-CPP

OOP57-CPP Prefer special member functions
and overloaded operators

CERT C++: OOP57-CPP

For all supported CERT C++ rules, see CERT C++ Rules (Polyspace Bug Finder Access).

 

2-3

https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea1601.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea1601.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea1671.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea1671.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea1811.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea1811.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea1812.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea1812.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea1851.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea1851.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea1891.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/autosarc14rulea1891.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/autosar-c-14.html
https://wiki.sei.cmu.edu/confluence/x/VXs-BQ
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/certcdcl59cpp.html
https://wiki.sei.cmu.edu/confluence/x/Vns-BQ
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/certcexp61cpp.html
https://wiki.sei.cmu.edu/confluence/x/hns-BQ
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/certcmem57cpp.html
https://wiki.sei.cmu.edu/confluence/x/SXs-BQ
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/certcerr61cpp.html
https://wiki.sei.cmu.edu/confluence/x/lHs-BQ
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/certcoop57cpp.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/cert-c-rules.html


CERT C Support: Check for undefined behavior from successive joining
or detaching of the same thread
In R2019b, you can look for violations of these CERT C rules in addition to previously supported
rules.

CERT C Rule Description Polyspace Checker
CON39-C Do not join or detach a thread

that was previously joined or
detached

CERT C: Rule CON39-C

For all supported CERT C guidelines, see CERT C Rules and Recommendations (Polyspace Bug Finder
Access).

New and updated Bug Finder defect checkers
Summary: In R2019b, you can check for new issues and also see improved results for previous
checkers.

New Checkers in R2019b

Defect Description
Unnamed namespace in header file Header file contains unnamed namespace leading

to multiple definitions
Lambda used as decltype or typeid
operand

decltype or typeid is used on lambda
expression

Operator new not overloaded for
possibly overaligned class

Allocated storage might be smaller than object
alignment requirement

Bytewise operations on nontrivial
class object

Value representations may be improperly
initialized or compared

Missing hash algorithm Context in EVP routine is initialized without a
hash algorithm

Missing salt for hashing operation Hashed data is vulnerable to rainbow table attack
Missing X.509 certificate Server or client cannot be authenticated
Missing certification authority list Certificate for authentication cannot be trusted
Missing or double initialization of
thread attribute

Noninitialized thread attribute used in functions
that expect initialized attributes or duplicated
initialization of thread attributes

Use of undefined thread ID Thread ID from failed thread creation used in
subsequent thread functions

Join or detach of a joined or detached
thread

Thread that was previously joined or detached is
joined or detached again

R2019b

2-4

https://wiki.sei.cmu.edu/confluence/x/L9UxBQ
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/certcrulecon39c.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/cert-c-rules-and-recommendations.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/unnamednamespaceinheaderfile.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/lambdausedasdecltypeortypeidoperand.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/lambdausedasdecltypeortypeidoperand.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/operatornewnotoverloadedforpossiblyoveralignedclass.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/operatornewnotoverloadedforpossiblyoveralignedclass.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/bytewiseoperationsonnontrivialclassobject.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/bytewiseoperationsonnontrivialclassobject.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/missinghashalgorithm.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/missingsaltforhashingoperation.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/missingx.509certificate.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/missingcertificationauthoritylist.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/missingordoubleinitializationofthreadattribute.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/missingordoubleinitializationofthreadattribute.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/useofundefinedthreadid.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/joinordetachofajoinedordetachedthread.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/joinordetachofajoinedordetachedthread.html


Updated Checkers in R2019b

Defect Description Update
Pointer or reference to
stack variable leaving
scope

Pointer to local variable leaves
the variable scope

The checker now detects
pointer escape via lambda
expressions.

MISRA C:2012 Directive 4.12: Dynamic memory allocation shall not be
used
Summary: In R2019b, you can look for violations of MISRA C:2012 Directive 4.12. The directive
states that dynamic memory allocation and deallocation packages provided by the Standard Library
or third-party packages shall not be used. The use of these packages can lead to undefined behavior.

See MISRA C:2012 Dir 4.12.

Configuration from Build System: Compiler version automatically
detected from build system
Summary: In R2019b, if you create a Polyspace analysis configuration from your build system by
using the polyspace-configure command, the analysis uses the correct compiler version for the
option Compiler (-compiler) for GNU® C, Clang, and Microsoft® Visual C++® compilers. You do
not have to change the compiler version before starting the Polyspace analysis.

Benefits: Previously, if you traced your build system to create a Polyspace analysis configuration, the
latest supported compiler version was used in the configuration. If your code was compiled with an
earlier version, you might encounter compilation errors and might have to specify an earlier compiler
version before starting the analysis.

For instance, if the Polyspace analysis configuration uses the version GCC 4.9 and some of the
standard headers in your GCC version include the file x86intrin.h, you can see a compilation error
such as this error:
/usr/lib/gcc/x86_64-linux-gnu/6/include/avx512bwintrin.h, line 2427: 
                                     error: invalid type conversion
|    return (__m512i) __builtin_ia32_packssdw512_mask ((__v16si) __A,
|           

You had to connect the error to the incorrect compiler version, and then explicitly set a different
version. Now, the compiler version is automatically detected when you create a project from your
build command.

 

2-5

https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/pointerorreferencetostackvariableleavingscope.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/pointerorreferencetostackvariableleavingscope.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/pointerorreferencetostackvariableleavingscope.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_access/ref/misrac2012dir4.12.html
https://www.mathworks.com/help/releases/R2019b/polyspace_bug_finder_server/ref/compilercompiler.html




R2019a

Version: 3.0

New Features

3



Bug Finder Analysis Engine Separated from Viewer: Run Bug Finder
analysis on server and view the results from multiple client machines
Summary: In R2019a, you can run Bug Finder on a server with the new product, Polyspace Bug
Finder Server™. You can then host the analysis results on the same server or a second server with
the product, Polyspace Bug Finder Access™. Developers whose code was analyzed (and other
reviewers such as quality engineers and development managers) can fetch these results from the
server to their desktops and view the results in a web browser, provided they have a Polyspace Bug
Finder Access license.

Benefits: You can run the Bug Finder analysis on a few powerful server class machines but view the
analysis results from many terminals.

With the desktop product, Polyspace Bug Finder, you have to run the analysis and view the results on
the same machine. To view the results on a different machine, you need a second instance of a
desktop product. The desktop products can now be used by individual developers on their desktops
prior to code submission and the server products used after code submission. See Polyspace Products
for Code Analysis and Verification.

Continuous Integration Support: Run Bug Finder on server class
computers with continuous upload to Polyspace Access web interface
Summary: In R2019a, you can check for bugs, coding standard violations and other issues on server
class machines as part of continuous integration. When developers submit code to a shared
repository, a build automation tool such as Jenkins can perform the checks using the new Polyspace
Bug Finder Server product. The analysis results can be uploaded to the Polyspace Access web

R2019a

3-2

https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/polyspace-products-for-code-analysis-and-verification.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/polyspace-products-for-code-analysis-and-verification.html


interface for review. Each reviewer with a Polyspace Bug Finder Access license can login to the
Polyspace Access web interface and review the results.

See:

• Install Polyspace Server and Access Products
• Run Polyspace Bug Finder on Server and Upload Results to Web Interface

Benefits:

• Automated post-submission checks: In a continuous integration process, build scripts run
automatically on new code submissions before integration with a code base. With the new product
Polyspace Bug Finder Server, a Bug Finder analysis can be included in this build process. The
analysis can run a specific set of Bug Finder checkers on the new code submissions and report the
results. The results can be reviewed in the Polyspace Access web interface with a Polyspace Bug
Finder Access license.

• Collaborative review: The analysis results can be uploaded to the Polyspace Access web interface
for collaborative review. For instance:

• Each quality assurance engineer with a Polyspace Bug Finder Access license can review the
Bug Finder results on a project and assign issues to developers for fixing.

• Each development team manager with a Polyspace Bug Finder Access license can see an
overview of Bug Finder results for all projects managed by the team (and also drill down to
details if necessary).

For further details, see the release notes of Polyspace Bug Finder Access .

 

3-3

https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/install-products-required-for-polyspace-analysis-on-server.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/run-bug-finder-on-server.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_access/release-notes.html


Continuous Integration Support: Set up testing criteria based on Bug
Finder static analysis results
Summary: In R2019a, you can run Bug Finder on server class machines as part of unit and
integration testing. You can define and set up testing criteria based on Bug Finder static analysis
results.

For instance, you can set up the criteria that new code submissions must have zero high-impact
defects before integration with a code base. Any submission with high-impact defects can cause a test
failure and require code fixes.

See:

• polyspace-bug-finder-server for how to run Bug Finder on servers.
• polyspace-access for how to export Bug Finder results for comparison against predefined

testing criteria.

If you use Jenkins for build automation, you can use the Polyspace plugin. The plugin provides helper
functions to filter results based on predefined criteria. See Sample Scripts for Polyspace Analysis with
Jenkins.

Benefits:

• Automated testing: After you define testing criteria based on Bug Finder results, you can run the
tests along with regular dynamic tests. The tests can run on a periodic schedule or based on
predefined triggers.

• Prequalification with Polyspace desktop products: Prior to code submission, to avoid test failures,
developers can perform a pre-submit analysis on their code with the same criteria as the server-
side analysis. Using an installation of the desktop product, Polyspace Bug Finder, developers can
emulate the server-side analysis on their desktops and review the results in the user interface of
the desktop product. For more information on the complete suite of Polyspace products available
for deployment in a software development workflow, see Polyspace Products for Code Analysis and
Verification.

To save processing power on the desktop, the analysis can also be offloaded to a server and only
the results reviewed on the desktop. See Install Products for Submitting Polyspace Analysis from
Desktops to Remote Server.

Continuous Integration Support: Set up email notification with
summary of Bug Finder results after analysis
Summary: In R2019a, you can set up email notification for new Bug Finder results. The email can
contain:

• A summary of new results from the latest Bug Finder run only for specific files or modules.
• An attachment with a full list of the new results. Each result has an associated link to the

Polyspace Access web interface for more detailed information.

R2019a

3-4

https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/ref/polyspacebugfinderservercommand.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/ref/polyspaceaccess.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/ug/sample-scripts-for-polyspace-analysis-with-jenkins.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/ug/sample-scripts-for-polyspace-analysis-with-jenkins.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/polyspace-products-for-code-analysis-and-verification.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/polyspace-products-for-code-analysis-and-verification.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/set-up-dispatch-of-polyspace-analysis-to-remote-servers-with-matlab-parallel-server.html
https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/set-up-dispatch-of-polyspace-analysis-to-remote-servers-with-matlab-parallel-server.html


See Send E-mail Notifications with Polyspace Bug Finder Results.

Benefits:

• Automated notification: Developers can get notified in their e-mail inbox about results from the
last Bug Finder run on their submissions.

• Preview of Bug Finder results: Developers can see a preview of the new Bug Finder results. Based
on their criteria for reviewing results, this preview can help them decide whether they want to see
further details of the results.

• Easy navigation from e-mail summary to Polyspace Access web interface: Each developer with a
Polyspace Bug Finder Access license can use the links in the e-mail attachments to see further
details of a result in the Polyspace Access web interface.

Offloading Polyspace Analysis to Servers: Use Polyspace desktop
products on client side and server products on server side
Summary: In R2019a, you can offload a Polyspace analysis from your desktop to remote servers by
installing the Polyspace desktop products on the client side and the Polyspace server products on the
server side. After analysis, the results are downloaded to the client side for review. You must also
install MATLAB® Parallel Server™ on the server side to manage submissions from multiple client
desktops.

 

3-5

https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/sample-e-mail-templates-for-e-mails-with-polyspace-results.html


See Install Products for Submitting Polyspace Analysis from Desktops to Remote Server.

Benefits: The Polyspace desktop products have a graphical user interface. You can configure options
in the user interface with assistance from features such as auto-population of option arguments and
contextual help. To save processing time on your desktop, you can then offload the analysis to remote
servers.

R2019a

3-6

https://www.mathworks.com/help/releases/R2019a/polyspace_bug_finder_server/gs/set-up-dispatch-of-polyspace-analysis-to-remote-servers-with-matlab-parallel-server.html

	R2020a
	Compiler Support: Set up Polyspace analysis easily for code compiled with MPLAB XC8 C compilers
	Compiler Support: Set up Polyspace analysis to emulate MPLAB XC16 and XC32 compilers
	Source Code Encoding: Non-ASCII characters in source code analyzed and displayed without errors
	Extending Checkers: Run stricter analysis that considers all possible values of system inputs
	AUTOSAR C++14 Support: Check for 37 new rules related to lexical conventions, standard conversions, declarations, derived classes, special member functions, overloading and other groups
	CERT C Support: Check for CERT C rules related to threads and hardcoded sensitive data, and recommendations related to macros and code formatting
	CERT C++ Support: Check for CERT C++ rule related to order of initialization in constructor
	CWE Support: Check for CWE rule related to incorrect block delimitation
	Bug Finder Defect Checkers: Check for possible performance bottlenecks, hardcoded sensitive data and other issues
	New Checkers in R2020a
	Updated Checkers in R2020a

	Modifying Checkers: Create list of functions to prohibit and check for use of functions from the list
	Exporting Results: Export only results that must be reviewed to satisfy software quality objectives (SQOs)
	Jenkins Support: Use sample Jenkins Pipeline script to run Polyspace as part of continuous delivery pipeline
	Changes in analysis options and binaries
	Option -function-behavior-specifications renamed to -code-behavior-specifications and capabilities extended

	Changes to coding rules checking
	Report Generation: Configure report generator to communicate with Polyspace Access over HTTPS
	Report Generation: Navigate to Polyspace Access Results List from report

	R2019b
	Compiler Support: Set up Polyspace analysis easily for code compiled with Cosmic compilers
	AUTOSAR C++14 Support: Check for misuse of lambda expressions, potential problems with enumerations, and other issues
	CERT C++ Support: Check for pointer escape via lambda expressions, exceptions caught by value, use of bytewise operations for copying objects, and other issues
	CERT C Support: Check for undefined behavior from successive joining or detaching of the same thread
	New and updated Bug Finder defect checkers
	New Checkers in R2019b
	Updated Checkers in R2019b

	MISRA C:2012 Directive 4.12: Dynamic memory allocation shall not be used
	Configuration from Build System: Compiler version automatically detected from build system

	R2019a
	Bug Finder Analysis Engine Separated from Viewer: Run Bug Finder analysis on server and view the results from multiple client machines
	Continuous Integration Support: Run Bug Finder on server class computers with continuous upload to Polyspace Access web interface
	Continuous Integration Support: Set up testing criteria based on Bug Finder static analysis results
	Continuous Integration Support: Set up email notification with summary of Bug Finder results after analysis
	Offloading Polyspace Analysis to Servers: Use Polyspace desktop products on client side and server products on server side


